Algebra MATH-310

Lecture 2

Anna Lachowska

September 23, 2024

Plan of the course

- Integers: 1 lecture
- ② Groups: 6 lectures
- Rings and fields: 5 lectures
- Review: 1 lecture

Today: Groups-1

- (a) Definition and first examples
- (b) Subgroups
- (c) Cosets and Lagrange's theorem
- (d) Application: Euler's and Fermat's theorems
- (e) Application: RSA

Fermat's theorem

Poll: The following statement is NOT a Fermat's theorem:

- V A: There are no nonzero integers a, b, c such that $a^3 + b^3 = c^3$ VB: $a^3 + b^3 \neq c^3$ for any positive integers a, b, cHe last
 Fermal's

 Theorem
- \bigvee C: $a^n + b^n \neq c^n$ for natural $n \geq 3$ and any positive integers a, b, c
- D: There exist nonzero integers a, b, c such that $a^n + b^n = c^n$ for some, but not all natural $n \ge 3$ False
- $\bigvee \mathsf{F}$: For $a \in \mathbb{Z}_+$ and p a prime that does not divide a, we have $a^{p-1} \equiv 1 \pmod{p}$. If little Fermal's theorem

Groups: definition

Definition

A group is a set G with a binary operation $\cdot: G \times G \to G$ satisfying the axioms:

- **1** Associativity: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ for any $a, b, c \in G$.
- ② Neutral element: $\exists 1 \in G$ such that $1 \cdot a = a \cdot 1 = a$ for any $a \in G$
- **3** Inverse: For any $a \in G \exists a^{-1} \in G$ such that $a \cdot a^{-1} = a^{-1}a = 1$.

Definition

A group G is called finite if $|G| < \infty$. In this case $|G| \in \mathbb{N}$ is called the order of the group.

Definition

A group G is called abelian if $a \cdot b = b \cdot a$ for any $a, b \in G$.

Groups: first examples

- The real numbers $(\mathbb{R},+,0)$ form an abelian group with respect to abelian addition. The integers $(\mathbb{Z},+,0)$ form an abelian group with respect to addition.
 - ② For any $n \in \mathbb{N}$, $n \ge 2$, the equivalence classes of integers modulo n:

finite form an abelian group with respect to addition. In $\mathbb{Z}/6Z$, we have [2] + [5] = [1] etc. The order $|\mathbb{Z}/n\mathbb{Z}| = n$.

[0] is neutral;
$$[2]+[4]=[0] \Rightarrow [4]$$
 is the inverse of $[2]$ in $\frac{2}{6}$ Z.

3 The group of real invertible $n \times n$ matrices $GL(n, \mathbb{R})$ is a non-abelian infinite group with respect to the matrix multiplication.

$$A \cdot B \neq B \cdot A; \quad \forall \ A \ \exists \ \underline{A^{-1}} \in GL(n\mathbb{R}).$$

$$\mathbf{Id} = \begin{pmatrix} 1 & & & \\ 1 & & & \\ & & & \\ & & & \\ \end{pmatrix}$$

Euler's totient function

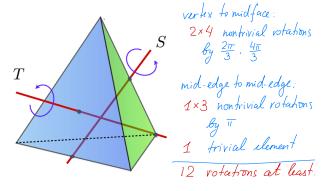
Multiplicative group modulo *n*

Let $n \in \mathbb{Z}_{\geq 2}$, $K = \{x \in \mathbb{N} : 1 \leq x \leq h, \gcd(x, n) = 1\}$. Then K is a group with respect to multiplication modulo n, and $K = \varphi(n)$. Notation: $(\mathbb{Z}/n\mathbb{Z}, \cdot)^*$.

$$\begin{cases} 1 \le x \le n : gcd(x,n)=1 \end{cases} (=) \exists a,b \in \mathbb{Z} : ax+bn=1 <=> \\ ax = 1 \pmod{n} \iff [a] \cdot [x] = [1] \\ => [x] \text{ is invertible.} \end{cases}$$

$$\underbrace{[a+n=5]}_{[1] \cdot [1]} = [1], [2] \cdot [3] = [1], [4] \cdot [4] = [1] => \\ [2] \cdot [3], [3] \cdot [2], [4] \cdot [4], [4], [4] = [4], [4] : \text{the neutral element.}$$

Groups: further examples



Poll: The order of the group of rotational symmetries of the regular tetrahedron is:

A: 6

B: 8

C: 9

D: 1

4□ > 4□ > 4□ > 4□ > 4□ > 4□ > 4□

Conclusions

- There are groups with respect to addition, multiplication, or another binary operation satisfying the axioms.
- Important example: additive and multiplicative groups of integers modulo $n: (\mathbb{Z}/n\mathbb{Z}, +) \neq (\mathbb{Z}/n\mathbb{Z}, \cdot)^*$. In particular, $|(\mathbb{Z}/n\mathbb{Z},+)|=n$ and $|(\mathbb{Z}/n\mathbb{Z},\cdot)^*|=\varphi(n)$.

8 / 18

Subgroups

Definition

A subgroup $H \subset G$ is a subset in G such that $1 \in H$ and H is closed with respect to the multiplication and taking inverses.

Example: $\{0,\pm 3,\pm 6,\pm 9,\ldots\}\subset (\mathbb{Z},+,0)$ is a subgroup of integers with respect to addition.

$$3n + 3k = 3(n+k) \in \{0, \pm 3, \pm 6, \dots \}$$

 $3n + (3(-n)) = 0$ inverse element

Subgroup generated by a single element

Suppose $g \in G$. Consider the subset $\langle g \rangle = \{1, g^{\pm 1}, g^{\pm 2}, g^{\pm 3}, \ldots\} \subset G$. Then $g^i \cdot g^k = g^{i+k} \in \langle g \rangle$, and for each g^i the inverse $g^{-i} \in \langle g \rangle$. Therefore $\langle g \rangle \subset G$ is a subgroup by construction. It is called the subgroup in G generated by the element g. It is the smallest subgroup of G containing g.

Example:
$$(\mathbb{Z}, +, 0) = G$$
, $g = 3 \Rightarrow \langle g \rangle = \{0, \pm 3, \pm 6, \pm 9, \dots \} = 3\mathbb{Z}$
 $3\mathbb{Z} \subset \mathbb{Z}$ is a subgroup with respect to addition, generated by $3 \in \mathbb{Z}$.

Definition

If there exists $n \in \mathbb{N}_+$ minimal such that $g^n = 1$ in G, then n is called the order of element g. In this case $\langle g \rangle = \{1, g, g^2, \dots g^{n-1}\}$ and $|\langle g \rangle| = n$.

Inverse: $g \cdot g^{h-l} = 1$

A. Lachowska Algebra Lecture 2 September 23, 2024 10 / 18

Cosets

Definition

Let $H \subset G$ be a subgroup and $g \in G$ an element. The left coset gH is the set of group elements of the form $gH = \{gh, h \in H\}$.

Proposition

- **1** Two cosets xH and yH are either equal or disjoint: xH = yH or $xH \cap yH = \emptyset$.
- **2** Any element $g \in G$ belongs to a left H-coset
- **1** If H is finite, then |xH| = |H| for any $x \in G$.

Proof: (1) $xH \cap yH \neq \emptyset \Rightarrow \exists h_1 h_2 \in H : xh_1 = yh_2 \Rightarrow x = yh_2h_1^{-1} = yh_3 \in yH$ Then $\forall h \in H \Rightarrow xh = yh_3h \in yH \Rightarrow xH \subseteq yH$, similarly $yH \in xH \Rightarrow xH = yH$.

- (2) Take the coset of g: gH= fg,gh,gh, h,h,eH
- (3) Let f: H->xH, f(h)=xh : f is surjective: xH=fxhyheH theH f is injective: if xh=xhy=>x'xh=x'xh=>h=hy

Example of cosets
$$(Z, +, 0) = G$$
; $3Z = H \in \mathbb{Z}$
Coset O with $3Z$ in Z
 $\{0+3k\}_{k\in\mathbb{Z}} = 3Z = H$
Coset of 1 with $3Z$ in Z
 $\{1+3k\}_{k\in\mathbb{Z}} = \{1, 4, 7, -2, -5...\}$
Coset of $10 = \{10+3k\}_{k\in\mathbb{Z}} = \{1, 4, 7, -2, -5...\}$
Coset of $2 = \{2+3k\}_{k\in\mathbb{Z}} = \{2, 5, -1, -4, ...\}$
Note that $Z = \{0+3k\}_{k\in\mathbb{Z}} = \{2, 5, -1, -4, ...\}$

12 / 18

Lagrange's theorem

Theorem

Let G be a finite group and $H \subset G$ a subgroup. Then |H| divides |G|.

=> |G| = [|H| = r|H| => |H| dividus |G|.

Definition

The number of left H-cosets in G is called the index of H in G. Notation: $[G:H] = \frac{|G|}{|H|} \in \mathbb{N}_+.$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □

Order of an element divides order of the group

Corollary

- **1** Let G be a finite group, and $g \in G$. Then the order of g divides |G|.
- $g^{|G|} = 1.$

Proof: (1) Let
$$H = \langle g \rangle = \{1, g, g^2, ..., g^{k-1}\}$$
 where k is the order of g in G .

 $= \langle g \rangle = H \subset G$ subgroup $= \rangle$ by Lagrange $= \rangle |\langle g \rangle| = k$ divides $|G|$.

(2) We have
$$g^{k} = 1 \Rightarrow g^{|G|} = g^{k \cdot t} = (g^{k})^{t} = 1^{t} = 1$$

 $|G| = kt, t \in \mathbb{N}$

4□ > 4□ > 4 = > 4 = > = 90

14 / 18

Applications of Lagrange's theorem

Theorem

(Euler's theorem)

Let $a, n \in \mathbb{Z}_+$ such that gcd(a, n) = 1. Then $a^{\varphi(n)} \equiv 1 \pmod{n}$.

Proof: Let
$$G = (\frac{7}{h}Z, \cdot, 1)^*$$
, thun $|G| = \mathcal{V}(h)$
if $gcd(a, n) = 1 \Rightarrow [a] \in G \Rightarrow by Corollary [a]^* = [1] \in G$
 $\alpha = 1 \pmod{n}$

Theorem

(Fermat's little theorem)

Let $a \in \mathbb{Z}_+$ and p a prime that does not divide a. Then $a^{p-1} \equiv 1 \pmod{p}$.

Proof:
$$gcd(a,p)=1$$
, $Y(p)=p-1 \Rightarrow gcd(a,p)=a^{P-1}=1 \pmod{p}$

Conclusions

- **1** If G is a finite group, and $H \subset G$ a subgroup, then |H| divides |G|.
- ② If G is a finite group, and $g \in G$, then the order of the element g divides |G|.
- **3** Let $a, n \in \mathbb{Z}_+$ such that $\gcd(a, n) = 1$. Then $a^{\varphi(n)} \equiv 1 \pmod{n}$. Why do we care?

How RSA Encryption Works

Setting

- Choose two large distinct primes p, q.
- **2** Let m = pq. Then $\varphi(m) = (p-1)(q-1)$.
- **3** Choose 1 < e < m such that $gcd(e, \varphi(m)) = 1$.
- **1** Use the Euclidean algorithm to find $d \in \mathbb{Z}$ such that $ed k\varphi(m) = 1$ for some $k \in \mathbb{Z}$.
- **1** Publish the encryption key (m, e).
- **1** Keep secret the decryption key (m, d).

Send a message

- **1** A publishes the encryption key (m, e).
- ② B wants to send message x, 0 < x < m to A. Then B computes $y \equiv x^e \pmod{m}$ and sends y publicly to A.
- **3** A computes $y^d = x^{ed} \stackrel{\text{...}}{=} x \pmod{m}$.

Why does it work?

Proposition

Let p,q be two distinct primes and m=pq. Let 1 < e < m be such that $\gcd(e,\varphi(m))=1$, and $d \in \mathbb{Z}$ such that $ed-k\varphi(m)=1$ for some $k \in \mathbb{Z}$. Then for any 0 < x < m, $x^{ed} \equiv x \pmod{m}$.

Proof: (1) If
$$x = pt \Rightarrow xed \equiv O(mod p) \Rightarrow (xed - x) \equiv O(mod p)$$
(2) If x is not divisible by $p \Rightarrow Fermat's + thm $x^{p-1} \equiv 1 \pmod{p}$

$$xed = x^{k!\ell(m)+1} = x^{k}(p-1)(q-1)+1 = (x^{p-1})^{k}(q-1) \times \equiv 1 \cdot x \pmod{p}$$

$$\Rightarrow (xed - x) \equiv O(mod p). \equiv 1 \pmod{p}$$
The same argument works for $q \Rightarrow (xed - x)$ divisible by p and $q \Rightarrow xed \equiv x \pmod{pq}$$

Why does it work?

Proposition

Let p,q be two distinct primes and m=pq. Let 1 < e < m be such that $\gcd(e,\varphi(m))=1$, and $d \in \mathbb{Z}$ such that $ed-k\varphi(m)=1$ for some $k \in \mathbb{Z}$. Then for any 0 < x < m, $x^{ed} \equiv x \pmod{m}$.

Example
$$p = 3$$
, $q = 11 \Rightarrow m = pq = 33$, $4(m) = (p-1)(q-1) = 20$
Let $e = 7 \Rightarrow gcd(7, 20) = 1$. Compute $d: ed - k \ell(m) = 1$
 $f \cdot 3 - 20 \cdot 1 = 1 \Rightarrow d = 3$ $(m, e) = (33, 7)$ encoding key
 $ed = d = 4m$ $(m, d) = (33, 3)$ decoding key.
Suppose we want to send $x = 20$. Encoding: compute x^e (mod m)
 20^{7} (mod 33) = $2^{14} \cdot 5^{7}$ (mod 33) = $(2^{5})^{2} \cdot 2^{4} \cdot 5^{7}$ (mod 33) = $2^{4} \cdot (-8)^{3} \cdot 5$ (mod 33)
 $= -2^{13} \cdot 5$ (mod 33) = $-(2^{5})^{2} \cdot 8 \cdot 5$ (mod 33) = -7 (mod 33) $\equiv 26$ (mod 33)

<ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 る の へ ○ < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回

Why does it work?

Proposition

Let p,q be two distinct primes and m=pq. Let 1 < e < m be such that $\gcd(e,\varphi(m))=1$, and $d \in \mathbb{Z}$ such that $ed-k\varphi(m)=1$ for some $k \in \mathbb{Z}$. Then for any 0 < x < m, $x^{ed} \equiv x \pmod{m}$.

=> send
$$\underline{y} = 26$$

To decode: $y^d \pmod{m} \equiv 26^3 \pmod{33} \equiv (-7)^3 \pmod{33}$
 $\equiv -49 \cdot 7 \pmod{33} \equiv -16 \cdot 7 \pmod{33} \equiv -13 \pmod{33} \equiv 20 \pmod{33}$
=> $y^d \equiv x = 20 \pmod{33}$.