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Plan of the course

1 Integers: 1 lecture

2 Groups: 6 lectures

3 Rings and fields: 5 lectures

4 Review: 1 lecture

Today: Groups-1

(a) Definition and first examples

(b) Subgroups

(c) Cosets and Lagrange’s theorem

(d) Application: Euler’s and Fermat’s theorems

(e) Application: RSA
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Fermat’s theorem

Poll: The following statement is NOT a Fermat’s theorem:

A: There are no nonzero integers a, b, c such that a
3
+ b

3
= c

3

B: a
3
+ b

3 6= c
3
for any positive integers a, b, c

C: a
n
+ b

n 6= c
n
for natural n � 3 and any positive integers a, b, c

D: There exist nonzero integers a, b, c such that a
n
+ b

n
= c

n
for some,

but not all natural n � 3

F: For a 2 Z+ and p a prime that does not divide a, we have

a
p�1 ⌘ 1 (mod p).
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Groups: definition

Definition
A group is a set G with a binary operation · : G ⇥ G ! G satisfying the

axioms:

1 Associativity: (a · b) · c = a · (b · c) for any a, b, c 2 G .

2 Neutral element: 9 1 2 G such that 1 · a = a · 1 = a for any a 2 G

3 Inverse: For any a 2 G 9 a
�1 2 G such that a · a�1

= a
�1

a = 1.

Definition

A group G is called finite if |G | < 1. In this case |G | 2 N is called the

order of the group.

Definition
A group G is called abelian if a · b = b · a for any a, b 2 G .
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Groups: first examples

1 The real numbers (R,+, 0) form an abelian group with respect to

addition. The integers (Z,+, 0) form an abelian group with respect to

addition.

2 For any n 2 N, n � 2, the equivalence classes of integers modulo n:

Z/nZ = {[0], [1], . . . [n � 1]}
form an abelian group with respect to addition. In Z/6Z , we have

[2] + [5] = [1] etc. The order |Z/nZ| = n.

3 The group of real invertible n ⇥ n matrices GL(n,R) is a non-abelian

infinite group with respect to the matrix multiplication.

A · B 6= B · A; 8 A 9 A
�1 2 GL(nR).

Id =
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Abelian

infinite

abliae n = G

10] is neutral ; (2) + 14] = 10] => (4] is the inverse of 123 in 46.

-

infinite
non-abelian

.



Groups: further examples
Multiplicative group modulo n

Let n 2 Z�2, K = {x 2 N : 1  x  m, gcd(x , n) = 1}. Then K is a

group with respect to multiplication modulo n, and |K | = '(n).
Notation: (Z/nZ, ·)⇤.
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Euler's totient function

⑭ !
#

[12X = n = gcd(x,
n) = 13 Ja ,

6 X : ax + bn = 1)

ax = 1 (modn) (a](x] = (1]
=> [x] is invertible

.

he + n = 5
.

When K = 5113
,

123
.
137

.

1433
[1]. (1) = 11]

,
(2] · (3] = [1]

,
(47 · (4] = (1] =>

(2]" = (3]
,
(3]" = (2)

,

(4]" = 14]
,

[17 is the neutral element in K.



Groups: further examples

Poll: The order of the group of rotational symmetries of the regular

tetrahedron is:

A: 6

B: 8

C: 9

D: 12
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↑

vertex to midface :

2x4 nontrivial rotations

by Z.

mid-edge to mid-edge:
1x3 nontrivial rotations

by it

trivial
elemen

aeast

-



Conclusions

1 There are groups with respect to addition, multiplication, or another

binary operation satisfying the axioms.

2 Important example: additive and multiplicative groups of integers

modulo n: (Z/nZ,+) 6= (Z/nZ, ·)⇤.
In particular, |(Z/nZ,+)| = n and |(Z/nZ, ·)⇤| = '(n).

A. Lachowska Algebra Lecture 2 September 23, 2024 8 / 18

-
see Appendix B

groups-
Math 310-2023

.pdf

for more examples
of unusualgroups

(Appendix A andB are

not apartof the exam).



Subgroups

Definition
A subgroup H ⇢ G is a subset in G such that 1 2 H and H is closed with

respect to the multiplication and taking inverses.

Example: {0,±3,±6,±9, . . .} ⇢ (Z,+, 0) is a subgroup of integers with

respect to addition.
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3n + 3k = 3(n +k)90
,

7 3
,

76 , .. ... 3

3n +13(n)) = 0 inverse element



Subgroup generated by a single element

Suppose g 2 G . Consider the subset hgi = {1, g±1, g±2, g±3, . . .} ⇢ G .

Then g
i · gk

= g
i+k 2 hgi, and for each g

i
the inverse g

�i 2 hgi.
Therefore hgi ⇢ G is a subgroup by construction. It is called the subgroup

in G generated by the element g . It is the smallest subgroup of G

containing g .

Definition
If there exists n 2 N+ minimal such that g

n
= 1 in G , then n is called the

order of element g . In this case hgi = {1, g , g2, . . . gn�1} and |hgi| = n.
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Example: (2
,

+, 0) = G
, g = 3 = (g) = 90,

73
,

76
,
79 ..... 3=32

342I is a subgroup with respect to addition,

generated by 3EX.

Inverse : g
.ght1 = 1



Cosets
Definition
Let H ⇢ G be a subgroup and g 2 G an element. The left coset gH is the

set of group elements of the form gH = {gh, h 2 H}.

Proposition
1 Two cosets xH and yH are either equal or disjoint: xH = yH or

xH \ yH = ;.
2 Any element g 2 G belongs to a left H-coset

3 If H is finite, then |xH| = |H| for any x 2 G .
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Proof : (1) XHAyH + 0 => JhhztH : Xh1 = y hz => X = yhahi = yhzEyH
↑Then TheH => Xh =YhtyH => XHCyH , similarly yAxH= xH =y

(2) Take the coset of g : gH = /gigh , ghn .... ShihaH
(3) Let f : H = x H

, f(h) = xh : f is surjective : xH = ExhYneH
TheH f is injecture : if Xhi = Xhe => xxh

,
= x"Xhe = hi = he

T



Example of cosets
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(2
,

+
,
0) = G ; 32=HC2

Coset O not 32 in 2

20 +3k\rez =32 = H

Coset of 1 wot 34 in I

21 + 3k3wez = 91 .

4
,

7
,
-2

,
-5

.... 3
Cost of10 = (10 + 3k3 vez

= [1 ,
4

,
7

,
-2

,
-5

..

10
... 3 = 21 + 3k3kez

Cost of 2 = 22 + 3kirez = 92
,

5
,

-1
,

-4,...

Note that I= 50 + 3k[kezU91 + 3kirez U92 +3k]kez



Lagrange’s theorem
Theorem

Let G be a finite group and H ⇢ G a subgroup. Then |H| divides |G |.

Definition
The number of left H-cosets in G is called the index of H in G . Notation:

[G : H] =
|G |
|H| 2 N+.
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Iroof: Each geG belongs to a left H-coset
,

and XH = y H,
or

xH(yH =0
=> G =U,

XiH disjoint union of left H-cosets
, finitely many

=>(G)=xit ,

but (xiH) = (H)Xi

=> (G) =,1H) = (H) = (H) dividu(61.



Order of an element divides order of the group

Corollary
1 Let G be a finite group, and g 2 G . Then the order of g divides |G |.
2 g

|G |
= 1.
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Proof (1) Let H = (g) = 51
, g , g2 ... g

* ] where k is the order

ofg in G.

=> (g) = HCG subgroup => by Lagrange => Kg)) = k divides /GI .

12) We have g" = 1 = g(f) = gkt = (gk)t = 1+ = 1

(G) = kt
,

+ -N M



Applications of Lagrange’s theorem

Theorem

(Euler’s theorem)

Let a, n 2 Z+ such that gcd(a, n) = 1. Then a
'(n) ⌘ 1 (mod n).

Theorem

(Fermat’s little theorem)

Let a 2 Z+ and p a prime that does not divide a. Then a
p�1 ⌘ 1 (mod p).
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↳of:LetGen( (136
aY(n) = 1 (modn) #

#roof: gcd(a , p) = 1
, Y(p) =

p -1 = by Euler's thm => alp) = aP"= 1(mody) #



Conclusions

1 If G is a finite group, and H ⇢ G a subgroup, then |H| divides |G |.
2 If G is a finite group, and g 2 G , then the order of the element g

divides |G |.
3 Let a, n 2 Z+ such that gcd(a, n) = 1. Then a

'(n) ⌘ 1 (mod n).

Why do we care?

A. Lachowska Algebra Lecture 2 September 23, 2024 16 / 18



RSA encryption system
Setting

1 Choose two large distinct primes p, q.

2 Let m = pq. Then '(m) = (p � 1)(q � 1).

3 Choose 1 < e < m such that gcd(e,'(m)) = 1.

4 Use the Euclidean algorithm to find d 2 Z such that ed � k'(m) = 1

for some k 2 Z.
5 Publish the encryption key (m, e).

6 Keep secret the decryption key (m, d).

Send a message
1 A publishes the encryption key (m, e).

2 B wants to send message x , 0 < x < m to A. Then B computes

y ⌘ x
e
(mod m) and sends y publicly to A.

3 A computes y
d
= x

ed ⌘ x (mod m).
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?!!



RSA encryption system
Why does it work?

Proposition

Let p, q be two distinct primes and m = pq. Let 1 < e < m be such that

gcd(e,'(m)) = 1, and d 2 Z such that ed � k'(m) = 1 for some k 2 Z.
Then for any 0 < x < m, x

ed ⌘ x (mod m).
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&

Proof: (1) If x =pt => xed = 0 (modp) = (x2d- x)= 0 (modp)
(2) If x is not divisible lyp => Fermatis than X

* "
= 1 (modp)

xed = x
kY(m) + 1

= xk(p- x(q- 1) + 1
= (xp

-)k( -

1x = 1 - x (mody)
-

=> (xed -x) = 0 (modp) .

=> 1(mody)
The same argument works for q => (xe

d
- X) divisible by p anda

= > Xed = X (modys H



RSA encryption system
Why does it work?

Proposition

Let p, q be two distinct primes and m = pq. Let 1 < e < m be such that

gcd(e,'(m)) = 1, and d 2 Z such that ed � k'(m) = 1 for some k 2 Z.
Then for any 0 < x < m, x

ed ⌘ x (mod m).
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Example
=

31 m
=pq

= 33
,

Y(m) =Pl%-

Computed : ed-kY(m) = 1

7 . 3 - 20 . 1 = 1 = d = 3 (m ,
e) = (33

,
7) encoding key& TmIk (m

,
d) = (33

,
3) decoding key
.

Suppose we want to send x = 20. Encoding : compute X (modm)

207 (mod33) = 214. 57 (mod 33) = 125) 22". 57 (mod 33) = 24 78)3. 5 (mod33)

=

= 213. 5 (mod 33) = - 1252 8 . 5 (mod 33) =
- 7 (mod 33) = 26 (mod 33)



RSA encryption system
Why does it work?

Proposition

Let p, q be two distinct primes and m = pq. Let 1 < e < m be such that

gcd(e,'(m)) = 1, and d 2 Z such that ed � k'(m) = 1 for some k 2 Z.
Then for any 0 < x < m, x

ed ⌘ x (mod m).
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= und(m) = 262 (mod 33) = (7) (mod33)

= - 49 - 7 (mod33) = -16.7 (mod33) = -13 (mod33) = 20(mod33)

= yd = X =20 (mod 33)
. -


